Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall

نویسنده

  • James W. Taylor
چکیده

We propose exponentially weighted quantile regression (EWQR) for estimating time-varying quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation framework, and then modify it by adapting a previously proposed double kernel estimator in order to provide greater accuracy for tail quantiles that are changing relatively quickly over time. We introduce double kernel quantile regression, which extends the double kernel idea to the modelling of quantiles in terms of regressors. In our empirical study of 10 stock returns series, the versions of the new methods that do not accommodate the leverage effect were able to outperform GARCH-based methods and CAViaR models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk?

In this paper we analyse nonparametric methods to estimate risk measures in loss distributions. We study kernel estimation for Value-at-Risk and Tail Value-at-Risk based on transformation of the original data. The proposed method consists of a double transformation kernel estimation. We show that a suitable bandwidth selection criterion has a direct expression for the optimal smoothing paramete...

متن کامل

Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece

The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...

متن کامل

Inference for Extremal Conditional Quantile Models (extreme Value Inference for Quantile Regression)

Quantile regression is a basic tool for estimation of conditional quantiles of a response variable given a vector of regressors. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. Quantile regression applied to the tails, or simply extremal quantile regression is of interest in numerous economic and financial appli...

متن کامل

Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution

The predictive performance of the realized stochastic volatility model of Takahashi, Omori, and Watanabe (2009), which incorporates the asymmetric stochastic volatility model with the realized volatility, is investigated. Considering well known characteristics of financial returns, heavy tail and negative skewness, the model is extended by employing a wider class distribution, the generalized h...

متن کامل

Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008